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Abstract 

We present a novel 2.5D1 image stippling 

process that renders the photographic depth-of-

field effect direct as an integral feature without 

any need of image filtering computation. Our 

approach relies on an additional depth image to 

produce the effect. The proposed method is 

based on a recent physically based blue noise 

sampling technique, which allows sampling 

naturally from spatial data, such as a 3D point 

cloud. The separation of the image data and its 

spatial information under our proposed 2.5D 

setting enables additional creative possibilities 

of image stippling art. Our approach can also 

produce an animated sequence that mimics the 

rack focus effect with good temporal coherence. 

1.   Introduction 

Image stippling has a long history, dating back 

to the 16th century as a printmaking technique 

introduced by Giulio Campagnola [1] for 

reproducing smooth tones, shading and image 

details. This image-making technique uses only 

strong tone dots as the sole pictorial elements, 

and it demands an extremely skilful spatial 

arrangement. After centuries, stippling is still 

ubiquitous because of its unique aesthetics, the 

transparency of the process, and its simplicity as 

an art form. 

Computational image stippling connects 

tightly to blue noise adaptive sampling 

techniques. Deussen and Isenberg [2] offer an 

excellent comprehensive review of its 

development. The term blue noise was formally 

defined and characterized by Ulichney [3] in his 

dithering research work. Figure 1b shows an 

example of how the structureless blue noise 

points reproduce pleasantly the underlying 

image tone with subtly varying yet uniform 

distribution. 

Early research work in computer graphics 

related to blue noise and image stippling was 

driven by the need for tone reproduction 

improvement for early digital printing and 

display devices. Floyd and Steinberg [4] 

proposed the error diffusion technique, which 

stands as one of the best examples of how 

dithering improves tone reproduction. In the 

rendering research community, Dippé and Wold 

[5] proposed the use of Poisson disk sampling in 

rendering with reference to work on the study of 

spatial pattern of photo-receptors by Yellott [6]. 

   
 

 
(a) Input pair 

(image + depth). 

(b) Regular stippling. 

 
(c) Stippling with depth of field using 

our method. 

 
Fig. 1. 2.5D computational image stippling examples (10,240 points) 



 

 

Cook [7] further popularized the effectiveness of 

Poisson disk sampling, which is effectively a 

quality blue noise sampling point set. 

Stippling-focused research work proposed by 

Deussen [8] relies on the relaxation technique 

proposed by Lloyd [9] to produce quality stipple 

drawings. To enable a more interactive 

experience, Secord [10] introduced a 

precomputed stipple tile-based approach, along 

with the weighted Voronoi method.   

Ostromoukhov et al. [11] and Kopf et al. [12] 

proposed improved tile-based acceleration 

techniques for better interactive image stippling. 

More modern blue noise research work by 

Balzer et al. [13], namely the Capacity 

Constrained Voronoi Tessellation (CCVT) 

technique, is considered the state-of-the-art blue 

noise sampling method. CCVT serves as an 

important model, which inspired additional 

work. One such work was proposed by De Goes 

et al. [14], which formulated the capacity 

constrained model into an optimal transport 

problem, now commonly known as the BNOT 

method. The kernel density model proposed by 

Fattal [15] also set a new standard for blue noise 

sampling quality. 

There are computational image stippling 

methods that are designed to improve the quality 

or variety of image stippling art from different 

perspectives. Pang et al. [16] proposed an 

approach that emphasizes reproduction of the 

structural details. Kim et al. [17] proposed an 

example-based stippling method that enables the 

use of sampled stippling patterns. Wei [18] 

introduced multi-class sampling, which enables 

more sophisticated stippling possibilities, and Li 

et al. [19] proposed an anisotropic technique, 

which substitutes dots with adaptive thin 

directional pictorial elements. Li and Mould 

[20] proposed a structure aware stippling 

method, which allows user-defined priority of 

stipple emphasis. 

For the depth-of-field effect, there is no 

shortage of bitmap image filtering-based 

techniques [21, 22, 23], which render the 

photographic effect using an additional depth 

image. To the best of our knowledge, there has 

been no attempt to introduce photographic 

effects to the image stippling process as an 

integral feature without any pre-processing of 

the input image. 

Our proposed 2.5D image stippling method 

renders the depth-of-field effect as a 

computation-free feature. We rely on the 

physically based blue noise sampling technique 

proposed by Wong and Wong [24] as the core of 

our approach. This sampling technique models 

the sample points as electrically charged 

particles, which self-organize by movement to 

reach an equilibrium. We apply an intuitive 

extension to this blue noise sampling method so 

that 2.5D image data can be adaptively sampled. 

This dynamics-based approach also allows us to 

produce an animated rack focus effect by 

changing the focus distance during simulation; 

the animated result shows stable temporal 

coherence.  

In section 2, we give a brief overview of the 

blue noise sampling technique used in our 

method and how it inspired our work. Section 3 

describes the details of our extension for 2.5D 

image data sampling. In section 4, we 

demonstrate and evaluate the depth of field 

enabled stippling results from an artistic point of 

view. And in section 5, we discuss a few creative 

stippling applications based on our method. 

2.   Physically based Blue Noise Sampling 

In this section, we review the blue noise 

sampling technique proposed by Wong and 

Wong [24], which serves as the foundation of 

our 2.5 image stippling method. This sampling 

method proposed a very intuitive approach, 

which models the sampling points as a system of 

electrically charged particles, with each carrying 

an identical charge. These like-charged particles 

repel each other, and the system undergoes self-

organization by movement until it reaches an 

equilibrium state by maintaining a uniform 

equidistant neighbourhood around each particle. 

The particles' positions are then computed by 

integrating the equations of motion using a 

customized Velocity Verlet numerical integrator 

[25, 24], described in the original article. The 

whole idea is not totally innovative. It was first 

suggested by Hanson [26] and later by Schmaltz 

[27], but using a pure 2D electric field. 

 



 

 

 2.1 Uniform Sampling  

Given a system of N particles constrained on an 

imaginary 2D plane, the total electrostatic force 

exerted on a particle pi based on Coulomb's 

inverse-square law is governed by the following 

equation (eq. 1): 

𝐹𝑖 = 𝑞𝑠
2 ∑

1

‖𝑟𝑖  −  𝑟𝑗‖
2

𝑁

𝑗≠𝑖

 �̂�𝑗,𝑖 

 

where 𝑞𝑠 is the amount of charge carried by each 

particle, 𝑟𝑖 and 𝑟𝑗 are the positions of particles 𝑝𝑖 

and 𝑝𝑗 , respectively, and �̂�𝑗,𝑖  is a unit vector 

pointing from 𝑟𝑗  to 𝑟𝑖 , which represents the 

direction of force. The process is simulated in a 

periodic domain, and the particles self-organize 

to reach an equilibrium state. Figure 2 shows a 

uniform point set generated using this physically 

based technique. This point set exhibits high-

quality blue noise characteristics and is reflected 

by its power spectrum, as shown in Figure 2b. 

2.2 Adaptive Sampling  

What inspired our 2.5D image stippling 

approach is the adaptive sampling model 

proposed by this sampling method. To 

adaptively sample a varying density function, 

such as a bitmap image, the sampling method  

creates an additional imaginary 2D plane, 

named the density plane. On this new density 

plane, a regular grid of M non-moving 

attractively charged particles is created; each 

particle's charge is determined by the 

corresponding pixel that it represents. The 

amount of charge 𝑞𝑘 carried by a given particle 

𝑝𝑘 on the density plane is defined as follows (eq. 

2):  

 

𝑞𝑘 =  −𝐴(1.0 −  𝐼𝑘) 

 

where 𝐼𝑘  is the pixel's intensity value that the 

particle 𝑝𝑘 represents, and 𝐴 is a positive valued 

coefficient determined by the total charge of the 

particles on the sampling plane. This 

relationship guarantees a total balance of 

potential. The force exerted on a particle 𝑝𝑖 on 

the sampling plane by the charges on the density 

plane is governed by the following equation (eq. 

3): 

 

𝐺𝑖 = 𝑞𝑠
2 ∑

𝑞𝑘

‖𝑟𝑖  −  𝑟𝑘‖2

𝑀
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The total force experienced by a particle 𝑝𝑖 can 

be expressed as the sum of equations (1) and (3). 

We carefully examined the stipple images 

produced by this blue noise sampling method, 

and we noticed that the amount of charge 𝑞𝑠 

carried by the sampling particles has an 

important impact on the overall image quality.  

Figure 3 shows a pair of stipple images produced 

using different values of 𝑞𝑠. A higher value of 

𝑞𝑠 produces an impression of better contrast. We 

believe it is a logical consequence that the larger 

force between sampling particles produces more 

space in the areas of low density (or brighter 

area), so it boosts the overall contrast. It is not 

   
 

Fig. 2. Uniform sampling using the physically based blue 

noise sampling method. [24] 

(a) Uniform point set 

with qs = 0.25. 

 

(b) Power spectrum. 

 

    
 

Fig. 3. Impact of sampling particle’s charge 𝑞𝑠 on adaptive 

sampling. 

(a) qs = 0.05. 

 
(b) qs = 0.35. 

 



 

 

hard to see that Figure 3b offers better contrast 

than Figure 3a. For a lower a value of 𝑞𝑠 , we 

note that the points are obviously less structured, 

and they seem to be more sensitive to subtle 

local image structures too. In our experience, a 

higher value of 𝑞𝑠 accelerates the convergence if 

it is a necessary factor to consider. 

The density plane is by design placed tightly 

and parallel to the sampling plane to control the 

local density of the sampling particles. Wong 

and Wong [24] briefly demonstrated the impact 

of this inter-plane distance to the adaptive 

sampling results, and they named it a parameter 

for sharpness control. Figure 4 shows the effects 

of this parameter. It has an intuitive physical 

meaning here because according to Coulomb's 

inverse-square law, attractive force should be 

weakened and less localized when the distance 

between the sampling and the density planes 

increases, resulting in a stipple image that gives 

a blurred impression, as shown in Figure 4b. 

Although the force applied by the density plane, 

as expressed in Equation (3), assumes a planar 

arrangement of the particles, the model itself 

does permit a 3D configuration, as mentioned in 

Wong and Wong [24]. Our method exploits this 

3D configuration possibility as the foundation of 

our depth-of-field effect integrated stippling 

technique. 

3.   2.5D Image Stippling 

By extending the idea of using a 2D density 

plane for adaptive sampling, we propose 

substituting the planar setup of density particles 

with a height-field alike configuration. In our 

new model, each density particle has its own 

depth from the sampling plane defined by an 

additional depth image. We also introduce a new 

parameter 𝑑𝑓, which defines the focus distance, 

so the density particles at a distance 𝑑𝑓 from the 

sampling plane give an in-focus impression in 

the stipple result. 

To achieve this visual effect, we displace the 

whole density field towards the sampling plane 

by 𝑑𝑓, so the in-focus density particles exert a 

strong attraction to the sampling particles. Based 

on this new proposal, we adapt Equation (3) to 

accommodate the changes. The force exerted by 

this new configuration is now governed by the 

following equation (eq. 4): 

𝐺′𝑖 = 𝑞𝑠
2 ∑

𝑞𝑘

‖𝑟𝑖  −  𝑟′𝑘‖2 + 휀

𝑀

𝑘=1

 �̂�𝑘,𝑖 

where 𝑟′𝑘 = 𝑟𝑘  −  (0,0, 𝑑𝑓) is the new position 

of density particle 𝑝𝑘 , �̂�𝑘,𝑖  is a unit vector 

pointing from 𝑟′𝑘  to 𝑟𝑖 , and 휀  maintains a 

minimum distance between particles to avoid 

instability. To control the amount of depth of 

field, the depth component of all density 

particles can be globally scaled to achieve the 

desired degree of field depth. 

We use the same numerical integrator 

described in Wong and Wong [24]; the 

algorithm is outlined in Algorithm 1. Using 

OpenGL compute shaders, we implemented  a 

simple GPU application based on our method. 

Figure 5 shows an example of how our method 

is used to create stipple images from the same 

input with different focus distances. The average 

computation time of this example is 326ms per 

iteration, using an nVIDIA Geforce GT 650M 

mobile GPU. 

______________________________________ 

Algorithm 1 Numerical Integrator 

1. Position Update: 

�⃗�(𝑡 + 𝛿𝑡) = �⃗�(𝑡) + 𝑚𝑖𝑛(𝐃, �⃗�(𝑡)𝛿𝑡 +
1

2
�⃗�(𝑡)𝛿𝑡2) 

2. Acceleration Update: 
Compute �⃗�(𝑡 + 𝛿𝑡) using �⃗�(𝑡 + 𝛿𝑡) 

3. Velocity Update: 

�⃗�(𝑡 + 𝛿𝑡) = 𝑚𝑖𝑛(
𝐃

𝛿𝑡
, 𝐒�⃗�(𝑡) +

1

2
(�⃗�(𝑡) + �⃗�(𝑡 + 𝛿𝑡))𝛿𝑡) 

4. Repeat 

    
 

Fig. 4. Adaptive Sampling with different amount of inter-

plane distance. 

(a) Small inter-plane 

distance. 

 

(b) Large inter-plane 

distance. 

(b) . 

 



 

 

where 𝐒 is a user-defined damping factor of a 

range of [0,1), which improves convergence. 

We find that a value of 0.95 works best in most 

scenarios. 𝐃 defines the maximum per time-step 

displacement of each particle, which we keep 

constantly at 0.002, using a normalized 

coordinate system in our periodic simulation 

setting. 

4.   Evaluation 

In this section, we evaluate the visual quality 

and image characteristics of our rendered 

output. In the PDF version of this paper, all 

stipple images are embedded in vector form for 

better visual examination. 

4.1 Pre-filtered Depth of Field  

The depth-of-field effect is traditionally 

achieved by applying adaptive filtering to a 

bitmap image, based on a depth map. We 

evaluate the qualitative difference between our 

results using the traditional approach from an 

artistic point of view instead of a technical one 

because our method is not designed to parallel 

or match the filtering result of the bitmap image-

based technique. 

We used commercial software [28] to obtain a 

pre-filtered bitmap, which is made to match the 

degree of depth of field in Figure 5b. Figure 6b 

shows a regular stippling result of the pre-

filtered depth-of-field input using our method; it 

is not hard to observe that the stipple image 

using pre-filtered input maintains better contrast 

and a stronger photographic impression. Our 

depth-of-field result in Figure 5b, however, has 

a stronger illustrational and handcrafted quality.  

As our approach does not intend to accurately 

simulate the bitmap image filtering process, we 

believe that our result has a unique look with its 

own aesthetic qualities.   

4.2 Degree of Depth of Field  

Our model allows different degrees of depth of 

field by globally scaling the depth component of 

the input depth map. Figure 8 shows two 

stippling results rendered with different depth 

scaling factors, while all other settings remain 

identical. The one with shallow depth of field, 

   
(a) Input pair 

(image + depth). 
(b) Focus on the front, depth = 0.25. 

 
(c) Focus on the back, depth = 0.55. 

 

  
(a) Pre-filtered 

input. 
 

(b) qs= 0.3. 

Fig. 5. Image stippling examples with depth-of-field effect using our method; both used 𝑞𝑠 = 0.3 and 150 iterations to converge. 

Fig. 6. Stipple image of the pre-filtered depth of field image. 



 

 

shown in Figure 7b, demonstrates stronger tone 

and local contrast on the dark in-focus areas. We 

believe this is a consequence of the relatively 

stronger attraction force and denser in-focus 

neighbourhood. 

4.3  Tone and Feature Reproduction 
Characteristics  

As mentioned above, the sampling particle's 

charge has an impact on the overall image 

contrast. This is an inherent property of the 

sampling method [24], but we take a deeper look 

at how this parameter 𝑞𝑠  affects the overall 

image quality. We use a pair of stipple images 

with the same depth of field settings using a 

lower number of sample points (5,120 points) to 

illustrate our observations more clearly. 

Figure 8a is produced using a smaller particle 

charge. It is not hard to observe that the stipple 

points on this image are far less structured than 

the ones in Figure 8b. The stipple points rely on 

various subtle and continuously varying density 

distributions to reveal the underlying image.  

This characteristic helps to maintain the subtle 

local tonal changes, and the whole image 

possesses a more organic quality from an artistic 

point of view. 

In contrast, the stipple points in Figure 8b are 

more structurally organized; this is especially 

clear on the silhouettes and other sharp features. 

The overall image has more technical clarity, 

and better overall image contrast. We believe 

this setting is good for instructional or graphical 

illustration purposes.  

 
(a) Medium depth of field. 

 

 
(b) Shallow depth of field. 

 

 
(a) Particle charge qs = 0.1. 

 

 
(b) Particle charge qs = 0.5. 

 
Fig. 7. Different degrees of depth of field image. Fig. 8. Effects of particle charge. 



 

 

5.   Creative Possibilities 

In this section, we explore various creative 

possibilities with our proposed method, ranging 

from general manipulation to photographic 

processing and animated sequence output.  

5.1 Mixed Input as Masked Processing  

As our method relies on a separate given depth 

image, users can always use a depth map that is 

not necessarily related to the image as a means 

to achieve other creative effects. Figures 9 and 

10 show two creative uses of mixing an 

unrelated depth map to an image map to create a 

masked stippling.  

5.2 Image Processing  

To render the depth-of-field effect for bitmap 

images, image features more distant from the 

focus require more processing because of a 

larger filter kernel to process, but this does not 

apply to our stippling method. For general 

bitmap image processing based on convolution, 

we may loosely relate the filter kernel radius in 

bitmap image processing with the depth 

component of a density particle in our method.  

As an example of this connection, we follow 

how bitmap image processing creates a tilt-shift 

effect to a given image; this is usually achieved 

by applying a blurring process with a global 

radially increasing filter kernel radius. We 

reproduce it with a depth map which mimics the 

approach. Figure 11 shows the input pair and the 

result.  

We believe this analogy between the kernel 

radius and the density particle's depth would 

serve as a good research direction for exploring 

systematic processing techniques for stipple 

images, or more precisely, point-based images. 

5.3 Temporal Coherence of Stipple Image 
Sequence  

We include with this paper a short video as 

supplemental material to demonstrate how our 

dynamics-based stippling method can be used to 

generate an animated sequence of stipple images 

that mimics the rack-focus effect. It can be used 

direct as the initialization point set for the next 

stipple computation. As long as the focus 

distance shifts slowly, the convergence of the 

new stipple image can happen in one or just a 

few time-steps in our experience. 

More importantly, the two consecutive stipple 

images often demonstrate good temporal 

  
(a) Mixed inputs. (b) Stipple output. 

 

  
(a) Mixed inputs. (b) Stipple output. 

 

  
(a) Input pair. 

inputs. 

 

(b) Stipple output. 

 
Fig. 9. Mixed input for stylized stippling. 

Fig. 10. Mixed input for graphic design. 

Fig. 11. Tilt-shift alike image filtering. 



 

 

coherence. This is the advantage of the global, 

dynamics-based blue noise method proposed by 

Wong and Wong. [24] This temporal coherence 

is often hard to achieve with the sequential 

method or algorithms which rely on 

randomization. 

Theoretically, this temporal coherence 

characteristic should also apply to animated 

video clip input, provided there is no vigorous 

change in image content, but this potential was 

not explored in the original paper. 

6.   Performance 

We implemented a simple graphics processing 

unit (GPU) application using OpenGL compute 

shaders without any specialized algorithmic 

acceleration. Stippling computation time 

depends only on the number of sample points 

and the input image size; the degree of depth of 

field has no impact on our performance. For a 

stippling of 10,240 points and an input bitmap 

of size 256 × 256, each iteration takes less than 

150ms on a modest Geforce GT650M notebook 

GPU. 

Our compute shader parallelizes in a per 

sample point fashion, and the OpenGL compute 

shader allows us to maximize the use of local 

memory to minimize the GPU global memory 

bottleneck. A summary of timing information is 

provided in Figure 12, showing how 

computation time increases with the number of 

sample points under different input bitmap sizes. 

Although we believe our method should run 

impressively on more modern GPUs, to 

compute stippling with several hundred 

thousand sample points at an interactive rate, an 

algorithmic level acceleration is definitely 

necessary. The physically based blue noise 

sampling method [24] we use is practically an 

N-Body simulation, so any algorithmic 

acceleration for an N-Body simulation should 

work for our method too. The multi-level 

summation method proposed by Hardy et al. 

[29] and the non-equidistant fast Fourier 

transform-based acceleration method by 

Gwosdek et al. [30] are both applicable to our 

method. 

In addition, the electric field of the density 

particles can be theoretically precomputed as a 

high resolution look-up table for runtime 

interpolation. 

 
Fig. 12. Per-iteration time performance on GT650M. 

 
(a) Regular stipple image. 

 

 
(b) Our stipple result with depth of field. 

Fig. 13. Inconsistency of perceived brightness. 



 

 

7.   Discussion 

We have presented a novel 2.5D image stippling 

method which is able to render certain 

photographic effects for free.  Based on a global 

blue noise sampling technique, our method 

generates an animated sequence with effects 

with good temporal coherence.   

However, we are aware that our method 

cannot maintain the consistency of the overall 

image brightness across stipples. Figure 13 

shows a pair of images; Figure 13a is a regular 

stipple image, and in Figure 13b the depth-of-

field effect was applied. There is an obvious 

tone difference between them, which can be 

explained by the concentration of attraction 

force. To provide overall brightness 

consistency, we believe that an algorithm to 

adjust the number of sample points has to be in 

place. This could be considered for future 

research.  
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